Proposition de correction de l'épreuve de mathématiques du brevet 2015

Exercice 1.

1°. Dans une feuille de calcul d'un tableur, une formule s'introduit avec le signe =.

On doit faire la somme des cellules B2 à B7. La réponse est =SOMME(B2:B7)

$$2^{\circ}$$
. $1250 + 2130 + 1070 + 2260 + 1600 + 1740 = 10050$

La quantité totale de lait collecté est de 10 050 L

$$\frac{10050}{6}$$
 = 1675 La moyenne des quantités de lait collecté est de 1 675 L

3°. L'exploitation "Petit Pas" produit 2 260 L sur les 10 050 L :

$$\frac{2260}{10050} \times 100 \approx 22\%$$
 Environ **22% de la collecte provient de l'exploitation"Petit Pas**"

Exercice 2.

• Sophie:

$$4 \xrightarrow{ajouter 8} 12 \xrightarrow{multiplier par 3} 36 \xrightarrow{enlever 24} 12 \xrightarrow{enlever le nombre de départ} 12 - 4 = 8$$

affirmation vraie, pour 4 comme nombre de départ on obtient 8.

• Martin:

$$0 \xrightarrow{ajouter 8} 8 \xrightarrow{multiplier par 3} 24 \xrightarrow{enlever 24} 0 \xrightarrow{enlever le nombre de départ} 0 - 0 = 0$$

affirmation vraie, pour 0 comme nombre de départ on obtient 0.

• Gabriel:

$$-3 \xrightarrow{ajouter 8} 5 \xrightarrow{multiplier par 3} 15 \xrightarrow{enlever 24} -9 \xrightarrow{enlever le nombre de départ} -9 - (-3) = -6$$

affirmation fausse, pour -3 comme nombre de départ on obtient -6.

• **Faïza**: soit x un nombre,

$$x \xrightarrow{ajouter 8} x + 8 \xrightarrow{par 3} 3(x + 8) \xrightarrow{enlever 24} 3(x + 8) - 24 \xrightarrow{enlever le nombre} 3(x + 8) - 24 - x$$

$$3(x + 8) - 24 - x = 3x + 24 - 24 - x = 2x$$

affirmation vraie, le résultat est le double du nombre de départ.

Exercice 3.

1°. Dans le triangle ADK rectangle en K, d'après le théorème de Pythagore :

$$DA^{2} = DK^{2} + AK^{2}$$

$$60^{2} = 11^{2} + AK^{2}$$

$$3600 = 121 + AK^{2}$$

$$AK^{2} = 3600 - 121 = 3479$$

$$AK = \sqrt{3479} \approx 59 \text{ cm}$$

Remarque: "au millimètre près" correspond à " à 0,1 cm près"

2°. Comme (DK) et (PH) sont perpendiculaire à la même droite (AK) alors (DK) // (PH)

Dans AKD, $P \in [AD]$, $H \in [AK]$ et (DK) // (PH) alors d'après le théorème de Thalès :

$$\frac{AH}{AK} = \frac{AP}{AD} = \frac{HP}{DK} \quad or \quad AP = AD - DP = 60 - 45$$

$$= 15 \quad donc$$

$$\frac{15}{60} = \frac{HP}{11} \quad d'où \ HP = \frac{11 \times 15}{60} = 2,75$$

$$HP = 2,75 \text{ cm}$$

Exercice 4.

1°.
$$f(3) = -6 \times 3 + 7 = -11$$

2°. Il y a 6 tenues possibles (on peut faire un "arbre des possibilités"), une seule permet d'être habillé uniquement en vert.

La probabilité qu'Arthursoit habillé uniquement en vert est de $rac{1}{6}$

 3° , le double de 2^{39} : $2 \times 2^{39} = 2^{1} \times 2^{39} = \mathbf{2^{40}}$

4°. Remarque: pour prouver qu'une affirmation est fausse on peut trouver un contre-exemple. PGCD(6;9) = $3 \neq 1$ or 6 est pair et 9 est impair

Le PGCD d'un nombre pair et d'un nombre impair n'est pas toujours égal à 1.

5°.
$$5x - 2 = 3x + 7$$
 soit $5x - 3x = 7 + 2$ donc $2x = 9$ alors $x = \frac{9}{2} = 4.5$

La solution de l'équation est 4,5

Exercice 5.

1°. Aire du rectangle ABDE = AB \times AE = $6 \times 7.5 = 45 \text{ m}^2$

Hauteur du triangle BCD: 9-6=3 m

Aire du triangle
$$BCD = \frac{Base \times Hauteur}{2} = \frac{7,5 \times 3}{2} = 11,25 \text{ m}^2$$

Surface totale à peindre = $45 + 11,25 = 56,25 \text{ m}^2$

 $\frac{56,25}{24} \approx 2,3$ il faudra prévoir 3 pots de peinture

 $3 \times 103,45 = 310,35$

Il faut prévoir un montant minimum de 310,35 € pour l'achat des pots de peinture.

2°.
$$\frac{2}{5}$$
 de 343,50 : $\frac{2 \times 343,50}{5} = 137,4$ 343,50 - 137,4 = 206,1 $\frac{206,1}{3} = 68,7$

Le montant de chaque mensualité sera de 68,7 €

Exercice 6.

1°. 12,5 + 10 = 22,5 La distance d'arrêt est de 22,5 m

2°.a. Un distance de réaction de 15 m (sur l'axe des ordonnées du 1^{er} graphique) correspond à **une vitesse** de 55 km/h.

b. La distance de freinage (2^{ème} graphique) **n'est pas proportionnelle** à la vitesse car la représentation graphique n'est pas une droite passant par l'origine.

c. distance de réaction pour une vitesse de 90 km/h : environ 25 m distance de freinage pour une vitesse de 90 km/h: environ 40 m

soit une distance d'arrêt pour une vitesse de 90 km/h d'environ 65 m.

3°. pout
$$v = 110 \text{ km/}_h$$
 $\frac{v^2}{152.4} = \frac{110^2}{152.4} \approx 79 \text{ m} \text{ à 1 m près}$

La distance de freinage sur une route mouillée à 110 km/h est d'environ 79 m.

Exercice 7.

1°. Dans le triangle ABC rectangle en B,

$$\tan(B\hat{C}A) = \frac{AB}{BC} = \frac{10}{100}$$
 donc $B\hat{C}A \approx 6^{\circ}$

2°. $\frac{1}{5} = \frac{20}{100} = 20 \%$ une pente 1:5 correspond à une pente de 20% donc correspond à une pente plus forte que 15 %

C'est donc le panneau B qui indique la pente la plus forte